

Elaboró: Lorena Miranda Cruz

"Guía de Estudio para el Extraordinario de Química II"

INSTRUCCIONES: Lee con atención cada una de las definiciones siguientes y encuéntralas en la sopa de letras.

ECUACIÓN QUÍMICA: Es la representación escrita de una reacción química.

ESTEQUIOMETRÍA: Estudia las leyes de combinaciones químicas de los elementos que intervienen en un cambio químico.

PRODUCTOS: Son el resultado de una reacción química.

REACTIVOS: Sustancias que inician una reacción química.

MASA ATÓMICA: Corresponde a la masa de un átomo y se expresa en uma.

NÚMERO DE AVOGADRO: Es el número equivalente a 6.022 x 10²³ átomos, moléculas o iones.

MASA MOLECULAR: Corresponde a la masa de una molécula y se expresa en uma.

Е	В	М	N	0	Ζ	L	Ζ	Р	R	0	D	U	С	Т	0	S	R	M
С	В	М	Ν	0	S	L	S	R	J	K	L	М	Ν	0	Р	Q	R	Α
U	В	Е	Ν	0	С	Ι	С	0	J	K	L	М	Z	0	Р	Q	R	S
Α	В	М	S	0	V	Ι	V	Α	J	K	L	М	Z	0	Р	Q	R	Α
С	В	М	Ν	Т	В	Ι	В	D	J	K	L	М	Z	0	Р	Q	R	М
I	В	М	Ν	0	Е	Ι	Ν	С	J	K	L	М	Z	0	Р	Q	R	0
0	В	I	J	K	L	Ø	Ν	Т	J	K	L	М	Z	0	Р	Q	R	L
Ν	D	R	J	K	L	Μ	U	0	В	Ζ	Χ	С	>	В	Ν	М	Μ	Ε
Q	D	Е	F	G	Η	Α	Е	ı	W	Т	Υ	U		0	0	L	Ρ	С
U	D	Α	F	G	Η	S	F	G	0	J	Н	L	Μ	Ν	В	٧	O	U
I	D	С	F	G	Η	Α	0	В	Н	M	Н	М	Z	0	V	Н	Ρ	L
М	D	Т	F	G	Η	Α	0	Ν	Н	Ν	Е	М	Z	0	В	Н	Z	Α
I	D	ı	F	G	Η	Τ	K	L	М	Ν	Н	Т	Z	0	Ν	Н	0	R
С	D	V	F	G	Η	0	K	L	М	Ν	Н	I	R	K	L	М	В	V
Α	ı	0	М	Ν		Μ	G	Н	Q	Е	I	I	っ		L	М	>	Н
Ν	ı	S	М	Ν	Α	-	G	Н	D	F	Α	М	Z	0	Α	Н	F	G
Ν	Α	В	Q	Е	R	O	0	В	Н	В	R	М	Z	0	В	Н	F	G
Е	R	W	D	F	G	Α	0	Ν	Н	N	G	М	Z	0	Ν	Н	F	G
Ν	U	М	Е	R	0	D	Е	Α	V	0	G	Α	D	R	0	М	F	G

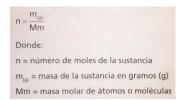
Elaboró: Lorena Miranda Cruz

INSTRUCCIONES: Analiza la siguiente reacción y completa la tabla con los datos que se te solicitan.

$$2Ag_2O_{(s)} \rightarrow 4Ag_{(s)} + O_{2(aq)}$$

Reactivos	Sustancias en estado sólido	Número de moles de Ag₂O
Productos	Sustancias en estado acuoso	Número de moles de Ag
	Sustancias en estado líquido	Número de moles de O ₂

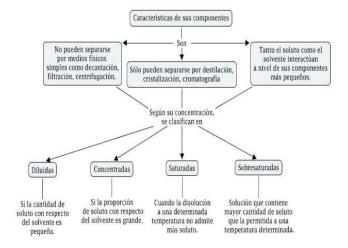
INSTRUCCIONES: Busca información acerca de los métodos de balanceo de ecuaciones químicas y elabora un organizador gráfico. Posteriormente, enfócate en el método por tanteo y elabora un diagrama de flujo que te indique los pasos que debes seguir para balancear las ecuaciones químicas.


INSTRUCCIONES: Balancea las siguientes ecuaciones químicas.

ECUACIÓN	PROCEDIMIENTO	ECUACIÓN BALANCEADA
H₂SO₄ + Ba(OH)₂ → 2H₂O		
C ₂ H ₅ OH + 3O ₂ → 2CO ₂ + 3H ₂ O		
$AI + O_2 \rightarrow AI_2 + O_3$		

Elaboró: Lorena Misanda Cruz

INSTRUCCIONES: Investiga los pasos a seguir para llevar a cabo las conversiones de moles a gramos y viceversa. Para poder hacer este cálculo es necesario entender la siguiente fórmula:


Utilizando esta fórmula calcula en dónde hay más moles de moléculas, si en 500g de CuCl₂ o en 500g de NaCl, y cuántas moléculas tiene cada compuesto.

Fórmula	Datos	Sustitución	Resultado
-			

INSTRUCCIONES: Investiga cuáles son las leyes estequiométricas que existen y elabora un cuadro comparativo.

INTRUCCIONES: Elabora un cuadro sinóptico en donde menciones la diversas aplicaciones de las leyes estequiométricas, incluye las relaciones mol-mol, masa-masa y volumenvolumen, anota sus fórmulas y un ejemplo resuelto de cada una.

INTRUCCIONES: Completa el siguiente mapa con las formas para calcular la concentración de las soluciones y sus respectivas fórmulas: Porcentual en masa (%), porcentual en volumen (%), porcentual en masa-volumen (%), partes por millón (ppm) y molaridad (M).

Elaboró: Losena Misanda Cruz

INSTRUCCIONES: Lee con atención la siguiente tabla.

TEORÍA	ARRHENIUS (teoría iones en agua)	BRONSTED-LOWRY (teoría protónica)	LEWIS (teoría electrónica)
Definición de ácido	Cede iones H ⁺ en agua.	Dador de protones.	Aceptor par de electrones.
Definición de base	Cede iones OH ⁻ en agua.	Aceptor de protones.	Dador par de electrones.
Reacciones ácido-base	Formación de agua.	Transferencia protónica.	Formación de enlace covalente coordinado.
Ecuación	$H^+ + OH^- \Longrightarrow H_2O$	$HA + B \Longrightarrow A^- + BH^+$	A + :B
Limitaciones	Aplicable únicamente a disoluciones acuosas.	Aplicable únicamente a reacciones de trasferencia protónica.	Teoría general.

Tomando en cuenta que el pH se calcula de la siguiente manera:

pH= -log [H+] pH + pOH= 14

Calcula el pH y pOH del jugo de limón, el cual tiene una concentración de iones hidronio del 4.8 x 10⁻³ mol/l.

Datos	Fórmula	Sustitución

INSTRUCCIONES: Investiga cómo se llevan a cabo la formación de sales por reacciones de neutralización y relaciona las columnas.

 $HCI + NaOH \rightarrow NaCI + H_2O$ Ácido débil + base débil $CH_3COOH + NH_4OH \rightarrow CH_3COONH_4 + H_2O$ Ácido fuerte + base débil $NH_3 + HCI \rightarrow NH_4CI$ Ácido débil + base fuerte $CH_3COOH + NaOH \rightarrow CH_3CONa + H_2O$ Ácido fuerte + base fuerte

Elaboró: Losena Misanda Cruz

INSTRUCCIONES: Tomando en cuenta que la Normalidad (N) se define como el número equivalente químico (Eq) de soluto disuelto en un litro de solución. Su fórmula es la siguiente:

N= Eq/V

Donde:

Eq= equivalente químico en gramos V= volumen de la solución en litros

El equivalente químico es una unidad de medida química y es igual a la masa equivalente (Meq) de un elemento o compuesto en gramos. Para obtener el equivalente químico del soluto se parte de la siguiente fórmula:

Meg= P/Eg

Donde:

Meq= masa equivalente del soluto (g/eq) P= peso en gramos de soluto

Eq= equivalente químico en gramos

Para calcular el peso del soluto (P) necesario en gramos, si se desea obtener una solución a cierta normalidad (N):

P=(N)(Meq)(V)

Asimismo, la masa en equivalentes se calcula de la siguiente forma:

Meq de un ácido, base o sal= masa molar/número de H, OH o la carga total del catión

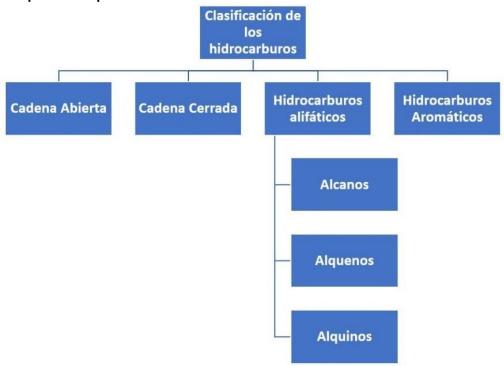
Tomando en cuenta todo esto, calcula cuántos gramos de sal de deben pesar para preparar una bebida isotónica de 600 ml de NaCl al 0.3 N.

Datos	Fórmula	Susutitución	Resultado

INSTRUCCIONES: Investiga cómo se lleva a cabo la formación de sales entre un ácido y una base e indica los productos y nombre de cada reactivo de las siguientes reacciones:

KOH + HCI →

NaOH + H₂S →



Elaboró: Lorena Misanda Cruz

INTRUCCIONES: Busca información acerca de la energía de activación y las reacciones endotérmicas y exotérmicas, y elabora el organizador gráfico que más se ajuste a la información. Una vez analizada la información escribe si las reacciones enlistadas son exotérmicas o endotérmicas según sea el caso.

Reacción	Endotérmicas o Exotérmicas
$Zn_{(s)} + 2HCI_{(ac)} \rightarrow ZnCI_{2(ac)} + H$	
$CuO_{(s)} + H_2 \rightarrow Cu_{(s)} + H_2O$	
$NaOH_{(ac)} + HCI \rightarrow NaCI_{(ac)} + H_2O$	

INTRUCCIONES: Busca información acerca de los hidrocarburos y su clasificación y completa el mapa.

